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Do you know about him?
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https://slate.com/technology/2016/06/what-caused-muhammad-alis-parkinsons-disease-its-nearly-impossible-to-say.html



Parkinson Disease (PD)

» Progressive disorder (Age>50)
» Affects the nervous system and the parts of the body controlled by the nerve

Common Symptoms:

 Tremors

» Gait & Balance Problem
Freezing of Gait: A sudden and temporary inability to initiate or continue walking, as if their feet
are glued to the ground.

* No cure

https://youtu.be/u_tozEV7fhttps://youtu.be/u_tozEV7fdk


https://youtu.be/u_tozEV7f4k

Wearables in PD

IMU Sensors (6D)

Accelerometer (3D) Acceleratlon h%y'.‘:.‘ """"" 8 ‘I
Gyroscope (3D): Angular velocity

« Extract Different Features (Velocity, and gait
pattern, detect physiological biomarkers)

« Early PD Detection
» Detect deterioration for known PD patients
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Wearables in PD

Store the data collected by wearables into a cloud service
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App Design

There are 2 features to be implemented.

1. Capture Sensor Data - Accelerometer, Gyroscope, Heart
rate, step counter.
2. Implement PD Hauser Diary
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App Design

The app captures the data related to hauser dairy.
A wireframe design of app -
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App Design

. The sensor data collection is made by smartwatch app.

. The app collects sensor data of accelerometer, gyroscope,
heart rate, step counter.

. The composite data is then to synced cloud every 10 minutes
If the watch is worn.

. There also a feature on the app to indicate medication is
taken.

. To optimize the battery usage data is collected at 50Hz
frequency.



What is ML?

Traditional Programming

. Takes inputs and generates outputs based on the program
. Programs are fixed unless they are updated manually
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What is ML?

Machine Learning

 Takes data and expected output as input
* Learns the data patterns/representations without any type of

explicit programming

« Continuously evolve into better models
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Individual Patient Variables

Training Data
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Supervised Learning

Train & Test both have labels (ground truth)
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Self Supervised

Train the models in 2 steps

1. Pretraining: Uses unlabeled data and learns some
interesting features/patterns

2. Finetune:
a. Uses the previous learned knowledge
b. Retrains the learned knowledge using
few labelled data to solve a specific
problem

dataset (no labels)

pre-training
model

transfer
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On Going PD Research

DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for
Parkinson's Long-Term Home Monitoring
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DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for
Parkinson's Long-Term Monitoring

A single IMU sensor — Reducing patient burdens
Patient-independent Model

Cost-effective opportunistic Al model

Uncontrolled home environment for long time remote monitoring.

Optimized for extended battery life a. Pretext Task: Raw signals X & RNXT
Masked window, X = mask (X, m)
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DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for

Parkinson's Long-Term Monitoring (Contd)

Differential Hopping Windowing Technique (DHWT)
« Handle the imbalance dataset with low FOG samples

Minimal Preprocessing (Removing Mean-value from each window)
Applied to trainset only to mimic real-world
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Results

e Using small amount data we got promising precisioniBRE 1 RAccttacy DS ALE L
results Episodes (Recall/ Sensitivity)
e Long FoG episodes are easily detectable SSL  86.5% 79.7%  76.6% 86.6% 74.2
SUP 90.1%  86%  83.1% 86.6% 82

True Label A C | |

Model's
Prediction|B| L D E|B|
A: FoG Episode L: Latency
B: False Positive C: Normal Episode

D: Detected FoG Episode (TP)
E: Detected Normal Episode (TN)
**False alarm triggers just before/after a TFE

Episode Avg Detected Detected
Time (sec) | Latency | Episodes | Windows (%)

<5 sec 0.18s 88% 73%
6-12 sec 0.83s 86.21% 67%
>13 sec 2.35s 97.3% 82.4%
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Metrics Value

Metrics Value
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magnitude, m = \/x2 + y2 + z2

e Set a magnitude Threshold (a) to discard the inactive
windows.

If m < «a : discard the current window as it is inactive (not
related to gait activities)

e [t will extend the battery life

e Model will be lightweight - easy to deploy into a
mobile wearable devices
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Future Work

Suggest Effective Medication Plan

Medication time
Medication dose

. Assess PD Severity
. Detect atypical and typical PD
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