TimelLLM: Time Series Forecasting by
Reprogramming Large Language Models

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen

Presenter: Shovito Barua Soumma
Date: October 16, 2024

* ICLR 2024, [96 Citations as today]
 Code Base: https://github.com/KimMeen/Time-LLM

* Easy Use: https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html

https://www.shovitobarua.com/
https://github.com/KimMeen/Time-LLM
https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html

Introduction

TimeGPT-1

Azul Garza, Cristian Challu”, Max Mergenthaler-Canseco *
Mixtla
San Francisco, CA, USA
{azul ,cristian,max}inixtla.io

Abstract

In this paper, we introduce TimeGPT, the first foundation model for time series,
capable of generating accurate predictions for diverse datasets not seen during
training. We evaluate our pre-trained model against established statistical, ma-
chine learning, and deep learning methods, demonstrating that TimeGPT zero-shot
inference excels in performance, efficiency, and simplicity. Our study provides
compelling evidence that insights from other domains of artificial intelligence
can be effectively applied to ime series analysis. We conclude that large-scale
time series models offer an exciting opportunity to democratize access to precise
predictions and reduce uncertainty by leveraging the capabilities of contemporary
advancements in deep learning.

Time series forcasting is important in
financial market.

But freqeuenct changes in data
distribution makes it challenging.

Small amount of historical data

Models are not generalizable for different
task (weather vs stock)

Training all the parameters using huge
amount of dataset

TimeGPT is a foundation model for time
series forcasting => needs huge resource
to retrain model

Dataset Statistics

e Lama (decoder only architecture)
* Not capable to handle timeseries data

T5 (11B)

100%

GLaM (1200B)

22%
48%
30%

Webpages
Conversation Data
Books & News
Scientific Data
Code

Falcon (40B)

100%

PalL.M (540B)

5%
14%

50%

31%

LLaMA (65B)

3%
2% 5%
5%

87%

LaMDA (137B)

13%
38%

50%

GPT-3 (175B)

16%

84%

Galactica (120B)
8%
7%

86%

MT-NLG (530B)
2%
26% 4%

6% 62%

GPT-NeoX (20B)
8%
30%
38%
10%
15%

M 4 (800G, 2019), ™ OpenWebText (38G, 2023), ™ Wikipedia (21G, 2023)
- the Pile - StackExchange (41G, 2020)
€ BookCorpus (5G, 2015), & Gutenberg (-, 2021), & CC-Stories-R (31G, 2019), £ CC-NEWES (78G, 2019), £ REALNEWs (120G, 2019)
& the Pile - ArXiv (72G, 2020), £ the Pile - PubMed Abstracts (25G, 2020)

BigQuery (-, 2023), the Pile - GitHub (61G, 2020)

Gopher (280B)
3%

37%
60%

CodeGen (16B)

20%
39%

6%

10%
25%

A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine, Hanguang Xiao et al 2024

Chinchilla (70B)
4%

409
& 56%

AlphaCode (41B)

100%

https://arxiv.org/search/cs?searchtype=author&query=Xiao,+H

TimelLM

 Existing LLM model is not changed [No Finetuning]

* Introduces reprogramming to use the existing backbone w/o
finetuning

e ReVINE Normalization method

(a) Task-Specific ~ (b) Model Fine-Tuning (c) Model Reprogramming

(Solrce Nodaiily) Leaming | a
| e [Summarization] | ! :, H 2 ! Q
' E => [Retrieval] ! ! J @ :1_%'_ § A H;ad
| Classificati | | 18 an ; ;
Nemmeen [_?s_'s'[_lc_aflc_)ril__J Q ! | @ ttnd 5) ?:%é Language ® [& High Effectiveness
A b et ; 3
g P Model ! A Model 5 Model 2 &
; Target Modality | 66 ? A4 A g 4 4 Contextual Bootstrapping
: [Forecasting] : ! mk - __.___: & ik i
: Aufie -> [Classification] ! : 6 6:0 O O O: &’ D.-.O? AReprogram ot . |
i [imputation] 1 ; e g ! mg Cross-Modality

O Source Data Sample O Target Data Sample [\ Source Task [\ Target Task 3§<€ Frozen) Fine-tune - » Pre-training

Figure 1: Schematic illustration of reprogramming large language models (LLMs) in comparison
of (a) task-specific learning and (b) model fine-tuning. Our proposal investigates and demonstrates
(c) how to effectively reprogram open-sourced LLLMs as powerful time series learners where well-
developed time series pre-trained models are not readily available.

3.0
2.0
1.0
0.0
-1.0

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
2.0

RevIN

ICLR 2022

 Reversible Instance Normalization
e https://github.com/ts-kim/RevIN

== Ground Truth
—— Informer
Informer + RewvlM

== Ground Truth
—— N-BEATS
—— MN-BEATS + RevIN

== Ground Truth
——— SCINzt
= SCINet + RevIN

== Ground Truth
—— |nformer
= Informer + RevIM

== Ground Truth
—— N-BEATS
—— N-BEATS + ReviN

== Ground Truth
—— SCINzt
= SCiINet + ReviN

train data | 19 | train data
testdata | 15 test data

ETTh,

train data | o5
120 test data

traindata | o8 i train data train data

testdata | o7 test data test data

11 | train data | 0 == troindats | oe

B 1 testaata | oa / wstara |

P 03 §

-] 0 ot
B os an -

o 0.2 0.3
8 os T s

oz
Lo 01

o1

o b fl ‘I\\
N :
- -4 -2 L] 2 Il

ETTm,
Density
e

B & 4 2 0z i & B] O] S 2 o 2z 1 8 ! B -z [H 3

train data ‘ train data \ train data i\ train data
10 | testdata | *F | testdata | 0% | testdata | 10 test data

] Lllee, \ y i .

“(a) original in b) Re -w(c)—’mo&el osutp:n%(d) ﬁevﬁ\l-dénorzmali:zed

ECL
Density

(a) original inpust N (b) Réle-noFmaIfzed

Figure 3: Effect of RevIN on distribution discrepancy between training and test data. From left
to right columns, we compare the training and test data distributions of a variable on each step of the
sequential process in RevIN: (a) the original input z, (b) the input & normalized by RevIN, (c) the
model prediction output %, and (d) the output §j denormalized by RevIN, the final prediction. The
analysis is conducted on the ETT and ECL datasets using SCINet (Liu et al., 2021) as the baseline.

https://github.com/ts-kim/RevIN

o —

o I 3,;:{ Output E?heddi ngs

| | | |

I [I [

. . [[[Add & Layer Norm :

I\/l Ot IVa tl O n : w : @[""“ Output Prcje::ticrn] : -’[F] |

: 1 l f1 : | FeedForward | |

: [FIanen&Linear] [[:

| J]\ i 1 i —-[Add & Layer Norm] :

| Output Patch | | v I:H = |

Note that this is different from |__Embeddings | = P""';:;d M | [R,] |
fine-tuning the LLM. Instead, we y ! Tnput Embeddings i

' A Reprogrammed |
Patch Embeddings

teach the LLM to take an input T . ! 1

. wiw Output Token ; | '
sequence of time steps and '
output forecasts over a certain

Embeddings

|

|

|

i\ :

(Token Embedder | |
» : (Embedder) L

|

|

|

|

|

|

% Pre-trained LLM [-""~ Patch Reprogram]

I
|
|
|
I
. . |
horizon. This means that the - g | (® Multi-Head Attention)
LLM itself stays unchanged. [__Tokenization | l® l | L . -
T - [Instance Norm] : Text Prototypes; |
P I
-——jrlptd-—T—e::f-——— :::m.:lm <task nformations> ___________T____________ : Embedder :
e e ‘/‘-\—/'\/\;A\ﬁ"\’ : Time Series Pre-trained |
<t tistic 2> wes R ' 1 : Patches ‘Word Embeddings:
#:ﬁ Frozen A Training ;:I: Prompt Embeddings E' : Patch Embeddings —> Forward —+ Backward

e At a high level, Time-LLM starts by tokenizing the input time series sequence with a customized patch embedding
layer. These patches are then sent through a reprogramming layer that essentially translate the forecasting task
into a language task

e we can also pass a prompt prefix to augment the model’s reasoning ability. Finally, the output patches go through
the projection layer to ultimately get forecasts.

Input Patching

e Patch by patch (instead of looking at a single time stamps)
* Preserves the temporal semantic meaning

e Each patch is a token
* Reduce the computation as lower no of token

* Once patching is done, the input sequence is sent to the
reprogramming layer, .

O (A J

OO0 O

Transforming Input into Language Task

Source Target

Vocab. Prototypes Reprogrammed
Patch Embeddings O

 Reprogramming Layer : It essentially

maps the input time series into a ““:;; Patch 1
language task, allowing us to leverage
the capabilities of the language Ralchie
model. '_'i SRR
* Once this is done, the translated =2

patches are sent to a multi-head
attention mechanism and a linear pﬁiﬁrﬁg?rﬁ?d'ﬂfn‘gs
projection is done to align the (Linear)
dimension of the reprogrammed @ TR]
patches to the dimension of the LLM e
backbone. [EmbedderJ """" S

F | Linear |

Time Series Pre-trained
Patches = Word Embeddings

Augment the input with Prompt-as-Prefix

Constrains using "Patch-as-Prefix"

* LLMs have limited precision with exact numbers

(like time series data) since they are primarily
designed for text.

* They struggle with long-term forecasting, where
precise numerical trends are essential for accuracy.

* Inconsistent numerical formatting when generating
numbers can lead to misinterpretation of the
forecasts.

* For example, a model could output "0.6" as
° [IIOH’ II-II’ |I6ll] Or
e as["0",".", "60"], making it tricky to standardize the predictions.

ﬁhe Electricity Transformer Temperature (ETT) indicates the \

\ END DATA] /

0.6

NNNN

%{é Pre-trained LLM
(Body)

I EEEETEE
TR

Pre-trained LLM Patch
(Text Embedder) Reprogram

P AT
VA

<input context> <instruction>

electric power long-term deployment. Each data point consists
of the target oil temperature and 6 power load features ...
Below is the information about the input time series:

[BEGIN DATA]

* % %
[Domain]: We usually observe that electricity consumption

peaks at noon, with a significant increase in transformer load
* ¥k

[Instruction]: Predict the next <//> steps given the previous

<T> steps information attached
* % %

[Statistics]: The input has a minimum of , @ maximum
of , and a median of . The overall trend
is . The top five lags are

Final Step: Output projection

* Once the prompt prefix and reprogrammed patches are sent to the LLM, it
outputs patch embeddings.

 This output must then be flattened and projected linearly to derive the final
forecasts, as shown below.

|
|
I /‘v'\f |
I [
|] @[A Output Projection]

(TTTLTTT]
. : 1

Forecasts

Al

! Output Patch [

| Embeddings | %2 Pre-trained LLM

""""""""" (Body) T

(5 output Token | LTI TTITTTIITIT]: [FIatten&Linear]
Embeddings 1 1 : ' Patch Embeddings

[: 1 E

i i %2 pre-trained LLM ["1'- Patch Reprogram] H i T

! : {Embedder) T i @ Multi-Head Attention | |

| (Croeniaven) o s © | (O st e,) | Output Patch
1 I

(0 et ,
............. ;;..‘1“.,‘ E | Embeddings

1 1
! Time Serles Pre<trained |1
| Patches Waord Embeddings,

.....

ReS u |tS Outperform all prior baseline works

Backbone: Llama-7B
Long term forecasting

* Input: 512 length Table 6: Ablations on ETTh1 and ETTm]1 in predicting 96 and 192 steps ahead (MSE reported). Red: the best.

* Output horizo, H = {96,192,336,720}

akiant | Long-term Forecasting | Few-shot Forecasting
° Evaluation metric, MAE MSE | ETTh1-96 ETTh1-192 ETTml1-96 ETThmi-192 ‘ ETTh1-96 ETTh1-192 ETTmI1-96 ETThmIl-192
° ’ A.1 Llama (Default; 32) 0.362 0.398 0.272 0.310 0.448 0.484 0.346 0.373
A.2 Llama (8) 0.389 0.412 0.297 0.329 0.567 0.632 0.451 0.490
A3 GPT-2 (12) 0.385 0.419 0.306 0.332 0.548 0.617 0.447 0.509

A.4 GPT-2 (6) 0.394 0.427 0.311 0.342 0.571 0.640 0.468 0.512

Sh f i B:1 %o Pasch Repragraaimiig | 041D 0412 0310 0342 0.498 0.570 0.445 0.487
Ort te rm roreca Stl ng wio Prompt-asPrefix | © | 0398 0.423 0.298 0.339 0.521 0.617 0.432 0.481

B.2 w/o Prompt-as-Prefix

[] . C.1 w/o Dataset Context 0.402 0.417 0.298 0.331 0.491 0.538 0.392 0.447
I n p Ut * 5 1 2 I e n gt h C.2 w/o Task Instruction 0.388 0.420 0.285 0.327 0.476 0.529 0.387 0.439
H — C.3 w/o Statistical Context 0.391 0.419 0.279 0.347 0.483 0.547 0.421 0.461

e QOutput horizon, H = {6,48}

Few shot learning (15t 10% predictions vs 1t 5% prediction)

Zero shot learning (optimized in one dataset then used it in another dataset
w/o any prior examples)

* For both cases: only long term horizon was tested

Summary

* An input series is first patched and reprogrammed as a language task.

* Appended a prompt prefix specifying the context of the data, the
instructions for the LLM, and input statistics.

* The combined input is sent to the LLM.

* The output embeddings are flattened and projected to generate
predictions.

Things to do for better results

* Training the model for longer.
* | trained for 100 epochs, but the paper uses 1000 epochs.

* Change LLM.

e | used GPT-2,

* but LLaMA, which was used in the paper, is much better.
* Better prompt engg.

* My promptis very minimal, and perhaps we can better engineer it.

* https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu#scrollTo=sBQOWSsp3-BX

https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu

Using MLP and NBEATS

—— Actual
6009 ——- TimeLLM
—- MLP
----- NBEATS
n 5001
g .
b V
% 400 1 4
(=}
>
-£=
£ 300 -
=]
2
200 -
100
1950 1952 1954 1956 1958 1960
Time
— Actual "
gop 4 === TimeLLM
—.- MLP
veer NBEATS
» 800
1]
on
c
@
@ 700
o
=8
=
=
£ 600 -
[=]
2
500 -
400 -
1950 1952 1954 1956 1958 1960

Time

Opinion

 would | use Time-LLM in a forecasting project?
* Probably not.

* The reality is that Time-LLM requires a lot of computing power and memory. After all, we
are working with an LLM.

 In fact, when reproducing the results from the paper using their script, training the
model on a single dataset for 1000 epochs takes approximately 19 hours using a GPU!

* Plus, LLMs take a lot of memory space, with billions of parameter usually weighing a few
gigabytes for the very large models. In comparison, we can train lightweight deep
learning models in a few minutes and get very good forecasts.

* For those reasons, | think that the tradeoff between a possible increase in forecasts
accuracy and the computing power and memory storage required to run such model is
not worth it.

	Slide 1: TimeLLM: Time Series Forecasting by Reprogramming Large Language Models
	Slide 2: Introduction
	Slide 3: Dataset Statistics
	Slide 4: TimeLLM
	Slide 5: RevIN (ICLR 2022)
	Slide 6: Motivation
	Slide 7: Input Patching
	Slide 8: Transforming Input into Language Task
	Slide 9: Augment the input with Prompt-as-Prefix
	Slide 10: Final Step: Output projection
	Slide 11: Results
	Slide 12: Summary
	Slide 13: Things to do for better results
	Slide 14: Using MLP and NBEATS
	Slide 15: Opinion

